

MEMORANDUM

EUGENE WATER & ELECTRIC BOARD

Relyonus.

TO:	Commissioners Simpson, Brown, Helgeson, Manning and Mital		
FROM:	Mel Damewood, Engineering Manager		
	Alan Fraser, Engineering Supervisor		
DATE:	September 6, 2013		
SUBJECT:	Downtown Eugene Electric Distribution System: Network or Radial		
OBJECTIVE:	Information Only with desire for Board Input		

Issue

The age and condition of the downtown electrical system (i.e. "Downtown Network") are driving EWEB to a multi-million dollar renovation of this part of the system. The existing system is built as a "Network" and serves approximately 900 downtown customers. Most EWEB customers (and most utility customers across the nation) are served by a "Radial" distribution system. Should the downtown electric distribution system remain as a Network system or be converted to a Radial system?

Background

Triggered by condition assessments, along with a rare extended outage in 2010, a review of EWEB's downtown electric distribution Network revealed the need to either replace the aging system with a similar Network design or a new Radial design. Both design approaches have advantages and disadvantages, as revealed using a comprehensive Triple Bottom Line (TBL) review. The TBL results indicate a clear advantage in some aspects such as: ease of implementation, and flexibility of scheduling and cash flow of a Network approach. Conversely, a Radial system offers advantages to customers in other aspects such as: lower future connection costs, ease/capacity of distributed generation, and flexibility of future system changes/growth. Overall, how much value EWEB places on the distinct categories of advantages/ disadvantages will drive the decision of which type of system to pursue. This paper summarizes the categories addressed in the TBL assessment.

Discussion

Management has identified different attributes for each distribution system. Staff will provide background, describe the different characteristics for each system, and solicit Board members opinions about these attributes in consideration for deciding the downtown's distribution system.

Summary of Evaluated Characteristics

Characteristic	Network	Radial	Comments
Distributed Generation	More Restricted	Less Restricted	Network protection
(DG)	and potentially		restricts reverse power
	more costly.		flow
Reliability	Ultra	Very High	Both are UG systems
Distribution Energy	No	Yes (BPA	Voltage optimization
Efficiency (EE)		incentive \$500k	Higher incentive if Spots
		to \$800k)	are converted to Radial
Construction Complexity	Moderate	Difficult	Rebuild vs. Redesign
Customer-Side Electric	Larger costs	Smaller costs	Affects new/remodel and
Equipment Costs			larger customers.
Customer Voltage Options	Less options	More options	Affects new/remodel and
	-	-	larger customers
Contribution in Aid	Larger costs	Smaller costs	Affects new/remodel and
(customer cost to			larger customers.
reimburse EWEB costs)			
Road Construction	Less (49 days)	More (80 days)	During construction
Disruption			process
Outages during	Limited	Likely	During conversion, less
construction		-	system redundancy
Safety (EWEB & Public)	Higher fault	Lower fault	2010 fire was a low-
	current and larger	current	voltage cable fire. Lower
	chance of low		fault current is safer for
	voltage cable fires		EWEB personnel and
			public
Greenhouse Gas	Higher GHG	Lower GHG	GHG savings from EE,
Emissions	releases	releases	Renewable-DG & EWEB
			Elec. Equip. purchases
Equipment Life Cycle	Larger by \$500k	Smaller	Network equipment is
Costs			more expensive
Potential Contingency	Less	More	Radial: More unknowns
Impact to Project Cost			
EWEB Resources	Less	More	
Cash Flow Requirements	Less	More	Final design affects
			answer
Construction Costs	\$17M	\$21M	Preliminary design costs

Requested Board Action

Management is interested in the Board members opinions of the different characteristics for each distribution system, and potentially how to evaluate their importance.